Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Adv Biol (Weinh) ; 8(5): e2400018, 2024 May.
Article En | MEDLINE | ID: mdl-38640945

Ophthalmic diseases affect many people, causing partial or total loss of vision and a reduced quality of life. The anterior segment of the eye accounts for nearly half of all visual impairment that can lead to blindness. Therefore, there is a growing demand for ocular research and regenerative medicine that specifically targets the anterior segment to improve vision quality. This study aims to generate a microfluidic platform for investigating the formation of the anterior segment of the eye derived from human induced pluripotent stem cells (hiPSC) under various spatial-mechanoresponsive conditions. Microfluidic platforms are developed to examine the effects of dynamic conditions on the generation of hiPSCs-derived ocular organoids. The differentiation protocol is validated, and mechanoresponsive genes are identified through transcriptomic analysis. Several culture strategies is implemented for the anterior segment of eye cells in a microfluidic chip. hiPSC-derived cells showed anterior eye cell characteristics in mRNA and protein expression levels under dynamic culture conditions. The expression levels of yes-associated protein and transcriptional coactivator PDZ binding motif (YAP/TAZ) and PIEZO1, varied depending on the differentiation and growth conditions of the cells, as well as the metabolomic profiles under dynamic culture conditions.


Cell Differentiation , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Anterior Eye Segment/cytology , Anterior Eye Segment/metabolism , Microfluidics/methods , Microfluidics/instrumentation , Organoids/metabolism , Organoids/cytology , YAP-Signaling Proteins/metabolism , Lab-On-A-Chip Devices , Transcription Factors/metabolism , Transcription Factors/genetics , Ion Channels/genetics , Ion Channels/metabolism
2.
Cancer Gene Ther ; 31(4): 537-551, 2024 Apr.
Article En | MEDLINE | ID: mdl-38233533

The highly mutated nature of bladder cancers harboring mutations in chromatin regulatory genes opposing Polycomb-mediated repression highlights the importance of targeting EZH2 in bladder cancer. Furthermore, the critical role of the retinoic acid signaling pathway in the development and homeostasis of the urothelium, and the anti-oncogenic effects of retinoids are well established. Therefore, our aim is to simultaneously target EZH2 and retinoic acid signaling in bladder cancer to potentiate the therapeutic response. Here we report that this coordinated targeting strategy stimulates an anti-oncogenic profile, as reflected by inducing a synergistic reduction in cell viability that was associated with increased apoptosis and cell cycle arrest in a cooperative and orchestrated manner. This study characterized anti-oncogenic transcriptional reprogramming centered on the transcriptional regulator CHOP by stimulating the endoplasmic reticulum stress response. We further portrayed a molecular mechanism whereby EZH2 maintains H3K27me3-mediated repression of a subset of genes involved in unfolded protein responses, reflecting the molecular mechanism underlying this co-targeting strategy. These findings highlight the importance of co-targeting the EZH2 and retinoic acid pathway in bladder cancers and encourage the design of novel treatments employing retinoids coupled with EZH2 inhibitors in bladder carcinoma.


Urinary Bladder Neoplasms , Urinary Bladder , Humans , Urinary Bladder/pathology , Retinoids/pharmacology , Retinoids/therapeutic use , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Cell Line, Tumor , Tretinoin/pharmacology , Tretinoin/therapeutic use , Gene Expression Regulation, Neoplastic
3.
Proteins ; 92(4): 529-539, 2024 Apr.
Article En | MEDLINE | ID: mdl-37991066

Since the start of COVID-19 pandemic, a huge effort has been devoted to understanding the Spike (SARS-CoV-2)-ACE2 recognition mechanism. To this end, two deep mutational scanning studies traced the impact of all possible mutations across receptor binding domain (RBD) of Spike and catalytic domain of human ACE2. By concentrating on the interface mutations of these experimental data, we benchmarked six commonly used structure-based binding affinity predictors (FoldX, EvoEF1, MutaBind2, SSIPe, HADDOCK, and UEP). These predictors were selected based on their user-friendliness, accessibility, and speed. As a result of our benchmarking efforts, we observed that none of the methods could generate a meaningful correlation with the experimental binding data. The best correlation is achieved by FoldX (R = -0.51). When we simplified the prediction problem to a binary classification, that is, whether a mutation is enriching or depleting the binding, we showed that the highest accuracy is achieved by FoldX with a 64% success rate. Surprisingly, on this set, simple energetic scoring functions performed significantly better than the ones using extra evolutionary-based terms, as in Mutabind and SSIPe. Furthermore, we demonstrated that recent AI approaches, mmCSM-PPI and TopNetTree, yielded comparable performances to the force field-based techniques. These observations suggest plenty of room to improve the binding affinity predictors in guessing the variant-induced binding profile changes of a host-pathogen system, such as Spike-ACE2. To aid such improvements we provide our benchmarking data at https://github.com/CSB-KaracaLab/RBD-ACE2-MutBench with the option to visualize our mutant models at https://rbd-ace2-mutbench.github.io/.


Angiotensin-Converting Enzyme 2 , Benchmarking , Humans , Pandemics , Mutation , Biological Evolution , Protein Binding
4.
Front Immunol ; 14: 1209249, 2023.
Article En | MEDLINE | ID: mdl-37809073

Background: TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can either induce cell death or activate survival pathways after binding to death receptors (DRs) DR4 or DR5. TRAIL is investigated as a therapeutic agent in clinical trials due to its selective toxicity to transformed cells. Macrophages can be polarized into pro-inflammatory/tumor-fighting M1 macrophages or anti-inflammatory/tumor-supportive M2 macrophages and an imbalance between M1 and M2 macrophages can promote diseases. Therefore, identifying modulators that regulate macrophage polarization is important to design effective macrophage-targeted immunotherapies. The impact of TRAIL on macrophage polarization is not known. Methods: Primary human monocyte-derived macrophages were pre-treated with either TRAIL or with DR4 or DR5-specific ligands and then polarized into M1, M2a, or M2c phenotypes in vitro. The expression of M1 and M2 markers in macrophage subtypes was analyzed by RNA sequencing, qPCR, ELISA, and flow cytometry. Furthermore, the cytotoxicity of the macrophages against U937 AML tumor targets was assessed by flow cytometry. TCGA datasets were also analyzed to correlate TRAIL with M1/M2 markers, and the overall survival of cancer patients. Results: TRAIL increased the expression of M1 markers at both mRNA and protein levels while decreasing the expression of M2 markers at the mRNA level in human macrophages. TRAIL also shifted M2 macrophages towards an M1 phenotype. Our data showed that both DR4 and DR5 death receptors play a role in macrophage polarization. Furthermore, TRAIL enhanced the cytotoxicity of macrophages against the AML cancer cells in vitro. Finally, TRAIL expression was positively correlated with increased expression of M1 markers in the tumors from ovarian and sarcoma cancer patients and longer overall survival in cases with high, but not low, tumor macrophage content. Conclusions: TRAIL promotes the polarization of human macrophages toward a proinflammatory M1 phenotype via both DR4 and DR5. Our study defines TRAIL as a new regulator of macrophage polarization and suggests that targeting DRs can enhance the anti-tumorigenic response of macrophages in the tumor microenvironment by increasing M1 polarization.


Leukemia, Myeloid, Acute , TNF-Related Apoptosis-Inducing Ligand , Humans , TNF-Related Apoptosis-Inducing Ligand/metabolism , Macrophages/metabolism , Phenotype , RNA, Messenger/metabolism , Receptors, Death Domain/metabolism , Leukemia, Myeloid, Acute/metabolism , Tumor Microenvironment
5.
Methods Mol Biol ; 2703: 59-70, 2023.
Article En | MEDLINE | ID: mdl-37646937

Transposable elements (TEs) are repeat elements that can relocate or create novel copies of themselves in the genome and contribute to genomic complexity and expansion, via events such as chromosome recombination or regulation of gene expression. However, given the large number of such repeats across the genome, identifying repeats of interest can be a challenge in even well-annotated genomes, especially in more complex, TE-rich plant genomes. Here, we describe a protocol for PlanTEnrichment, a database we created comprising information on 11 plant genomes to analyze stress-associated TEs using publicly available data. By selecting a genome and providing a list of genes or genomic regions whose TE associations the user wants to identify, the user can rapidly obtain TE subfamilies found near the provided regions, as well as their superfamily and class, and the enrichment values of the repeats. The results also provide the locations of individual repeat instances found, alongside the input regions or genes they are associated with, and a bar graph of the top ten most significant repeat subfamilies identified. PlanTEnrichment is freely available at http://tools.ibg.deu.edu.tr/plantenrichment/ and can be used by researchers with rudimentary or no proficiency in computational analysis of TE elements, allowing for expedience in the identification of TEs of interest and helping further our understanding of the potential contributions of TEs in plant genomes.


DNA Transposable Elements , Genome, Plant , Humans , DNA Transposable Elements/genetics , Databases, Factual , Genomics , Research Personnel , Tellurium
6.
Cells ; 12(6)2023 03 08.
Article En | MEDLINE | ID: mdl-36980177

Epigenetic deregulation is a critical theme which needs further investigation in bladder cancer research. One of the most highly mutated genes in bladder cancer is KDM6A, which functions as an H3K27 demethylase and is one of the MLL3/4 complexes. To decipher the role of KDM6A in normal versus tumor settings, we identified the genomic landscape of KDM6A in normal, immortalized, and cancerous bladder cells. Our results showed differential KDM6A occupancy in the genes involved in cell differentiation, chromatin organization, and Notch signaling depending on the cell type and the mutation status of KDM6A. Transcription factor motif analysis revealed HES1 to be enriched at KDM6A peaks identified in the T24 bladder cancer cell line; moreover, it has a truncating mutation in KDM6A and lacks a demethylase domain. Our co-immunoprecipitation experiments revealed TLE co-repressors and HES1 as potential truncated and wild-type KDM6A interactors. With the aid of structural modeling, we explored how truncated KDM6A could interact with TLE and HES1, as well as RUNX and HHEX transcription factors. These structures provide a solid means of studying the functions of KDM6A independently of its demethylase activity. Collectively, our work provides important contributions to the understanding of KDM6A malfunction in bladder cancer.


Histone Demethylases , Urinary Bladder Neoplasms , Urinary Bladder , Humans , Cell Line , Gene Expression Regulation , Histone Demethylases/genetics , Histone Demethylases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/pathology
7.
PeerJ ; 11: e15099, 2023.
Article En | MEDLINE | ID: mdl-36949761

Keratins (KRTs) are the intermediate filament-forming proteins of epithelial cells, classified, according to their physicochemical properties, into "soft" and "hard" keratins. They have a key role in several aspects of cancer pathophysiology, including cancer cell invasion and metastasis, and several members of the KRT family serve as diagnostic or prognostic markers. The human genome contains both, functional KRT genes and non-functional KRT pseudogenes, arranged in two uninterrupted clusters on chromosomes 12 and 17. This characteristic renders KRTs ideal for evolutionary studies. Herein, comprehensive phylogenetic analyses of KRT homologous proteins in the genomes of major taxonomic divisions were performed, so as to fill a gap in knowledge regarding the functional implications of keratins in cancer biology among tumor-bearing species. The differential expression profiles of KRTs in diverse types of cancers were investigated by analyzing high-throughput data, as well. Several KRT genes, including the phylogenetically conserved ones, were found to be deregulated across several cancer types and to participate in a common protein-protein interaction network. This indicates that, at least in cancer-bearing species, these genes might have been under similar evolutionary pressure, perhaps to support the same important function(s). In addition, semantic relations between KRTs and cancer were detected through extensive text mining. Therefore, by applying an integrative in silico pipeline, the evolutionary history of KRTs was reconstructed in the context of cancer, and the potential of using non-mammalian species as model organisms in functional studies on human cancer-associated KRT genes was uncovered.


Biomarkers, Tumor , Keratins , Humans , Keratins/genetics , Phylogeny , Biomarkers, Tumor/genetics , Intermediate Filament Proteins/genetics , Biological Evolution
8.
PeerJ ; 11: e15096, 2023.
Article En | MEDLINE | ID: mdl-36945359

Low-grade gliomas (LGG) are central nervous system Grade I tumors, and as they progress they are becoming one of the deadliest brain tumors. There is still great need for timely and accurate diagnosis and prognosis of LGG. Herein, we aimed to identify diagnostic and prognostic biomarkers associated with LGG, by employing diverse computational approaches. For this purpose, differential gene expression analysis on high-throughput transcriptomics data of LGG versus corresponding healthy brain tissue, derived from TCGA and GTEx, respectively, was performed. Weighted gene co-expression network analysis of the detected differentially expressed genes was carried out in order to identify modules of co-expressed genes significantly correlated with LGG clinical traits. The genes comprising these modules were further used to construct gene co-expression and protein-protein interaction networks. Based on the network analyses, we derived a consensus of eighteen hub genes, namely, CD74, CD86, CDC25A, CYBB, HLA-DMA, ITGB2, KIF11, KIFC1, LAPTM5, LMNB1, MKI67, NCKAP1L, NUSAP1, SLC7A7, TBXAS1, TOP2A, TYROBP, and WDFY4. All detected hub genes were up-regulated in LGG, and were also associated with unfavorable prognosis in LGG patients. The findings of this study could be applicable in the clinical setting for diagnosing and monitoring LGG.


Brain Neoplasms , Glioma , Humans , Prognosis , Neoplasm Grading , Glioma/diagnosis , Brain Neoplasms/diagnosis , Gene Expression Profiling , Membrane Proteins/genetics , Amino Acid Transport System y+L/genetics
9.
Commun Biol ; 6(1): 199, 2023 02 20.
Article En | MEDLINE | ID: mdl-36805539

Bladder cancer is mostly present in the form of urothelium carcinoma, causing over 150,000 deaths each year. Its histopathological classification as muscle invasive (MIBC) and non-muscle invasive (NMIBC) is the most prominent aspect, affecting the prognosis and progression of this disease. In this study, we defined the active regulatory landscape of MIBC and NMIBC cell lines using H3K27ac ChIP-seq and used an integrative approach to combine our findings with existing data. Our analysis revealed FRA1 and FLI1 as two critical transcription factors differentially regulating MIBC regulatory landscape. We show that FRA1 and FLI1 regulate the genes involved in epithelial cell migration and cell junction organization. Knock-down of FRA1 and FLI1 in MIBC revealed the downregulation of several EMT-related genes such as MAP4K4 and FLOT1. Further, ChIP-SICAP performed for FRA1 and FLI1 enabled us to infer chromatin binding partners of these transcription factors and link this information with their target genes. Finally, we show that knock-down of FRA1 and FLI1 result in significant reduction of invasion capacity of MIBC cells towards muscle microenvironment using IC-CHIP assays. Our results collectively highlight the role of these transcription factors in selection and design of targeted options for treatment of MIBC.


Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Muscles , Cell Line , Cell Movement/genetics , Chromatin Immunoprecipitation , Tumor Microenvironment , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins
10.
J Autism Dev Disord ; 53(3): 1091-1106, 2023 Mar.
Article En | MEDLINE | ID: mdl-35759154

Transposable elements (TEs) have been implicated in autism spectrum disorder (ASD). However, our understanding of their roles is far from complete. Herein, we explored de novo TE insertions (dnTEIs) and de novo variants (DNVs) across the genomes of dizygotic twins with ASD and their parents. The neuronal regulatory elements had a tendency to harbor dnTEIs that were shared between twins, but ASD-risk genes had dnTEIs that were unique to each twin. The dnTEIs were 4.6-fold enriched in enhancers that are active in embryonic stem cell (ESC)-neurons (p < 0.001), but DNVs were 1.5-fold enriched in active enhancers of astrocytes (p = 0.0051). Our findings suggest that dnTEIs and DNVs play a role in ASD etiology by disrupting enhancers of neurons and astrocytes.


Autism Spectrum Disorder , Autistic Disorder , Humans , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Twins, Dizygotic
11.
Turk J Biol ; 47(6): 383-392, 2023.
Article En | MEDLINE | ID: mdl-38681778

Background/aim: Glioblastoma is the most heterogeneous and the most difficult-to-treat type of brain tumor and one of the deadliest among all cancers. The high plasticity of glioma cancer stem cells and the resistance they develop against multiple modalities of therapy, along with their high heterogeneity, are the main challenges faced during treatment of glioblastoma. Therefore, a better understanding of the stemness characteristics of glioblastoma cells is needed. With the development of various single-cell technologies and increasing applications of machine learning, indices based on transcriptomic and/or epigenomic data have been developed to quantitatively measure cellular states and stemness. In this study, we aimed to develop a glioma-specific stemness score model using scATAC-seq data for the first time. Materials and methods: We first applied three powerful machine-learning algorithms, i.e. random forest, gradient boosting, and extreme gradient boosting, to glioblastoma scRNA-seq data to discover the most important genes associated with cellular states. We then identified promoter and enhancer regions associated with these genes. After downloading the scATAC-seq peaks and their read counts for each patient, we identified the overlapping regions between the single-cell peaks and the peaks of genes obtained through machine-learning algorithms. Then we calculated read counts that were mapped to these overlapping regions. We finally developed a model capable of estimating the stemness score for each glioma cell using overlapping regions and the importance of genes predictive of glioblastoma cellular states. We also created an R package, accessible to all researchers regardless of their coding proficiency. Results: Our results showed that mesenchymal-like stem cells display higher stemness scores compared to neural-progenitor-, oligodendrocyte-progenitor-, and astrocyte-like cells. Conclusion: scATAC-seq can be used to assess heterogeneity in glioblastoma and identify cells with high stemness characteristics. The package is publicly available at https://github.com/Necla/StemnesScoRe and includes documentation with implementation of a real-data experiment.

12.
PeerJ ; 10: e14149, 2022.
Article En | MEDLINE | ID: mdl-36213495

MicroRNAs represent major regulatory components of the disease epigenome and they constitute powerful biomarkers for the accurate diagnosis and prognosis of various diseases, including cancers. The advent of high-throughput technologies facilitated the generation of a vast amount of miRNA-cancer association data. Computational approaches have been utilized widely to effectively analyze and interpret these data towards the identification of miRNA signatures for diverse types of cancers. Herein, a novel computational workflow was applied to discover core sets of miRNA interactions for the major groups of neoplastic diseases by employing network-based methods. To this end, miRNA-cancer association data from four comprehensive publicly available resources were utilized for constructing miRNA-centered networks for each major group of neoplasms. The corresponding miRNA-miRNA interactions were inferred based on shared functionally related target genes. The topological attributes of the generated networks were investigated in order to detect clusters of highly interconnected miRNAs that form core modules in each network. Those modules that exhibited the highest degree of mutual exclusivity were selected from each graph. In this way, neoplasm-specific miRNA modules were identified that could represent potential signatures for the corresponding diseases.


MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Systems Biology , Gene Regulatory Networks/genetics , Gene Expression Regulation, Neoplastic/genetics , RNA, Messenger/genetics , Neoplasms/diagnosis
13.
J Mol Neurosci ; 72(6): 1182-1194, 2022 Jun.
Article En | MEDLINE | ID: mdl-35488079

Alzheimer's disease (AD) is one of the most severe neurodegenerative diseases observed in the elderly population. Although the hallmarks of AD have been identified, the methods for its definitive diagnosis and treatment are still lacking. Extracellular vesicles (EVs) have become a promising source for biomarkers since the identification of their content. EVs are released from multiple cell types and, when released from neurons, they pass from the brain to the blood with their cargo molecules. Hence, neuron-specific EV-resident microRNAs (miRNAs) are promising biomarkers for diagnosis of AD. This study aimed to identify altered miRNA content in small neuron-derived extracellular vesicles (sNDEVs) isolated from AD patients and healthy individuals. Furthermore, we examined the role of sNDEV-resident miRNAs in neuron-glia cellular interaction to understand their role in AD propagation. We identified 10 differentially expressed miRNAs in the sNDEVs of patients via next-generation sequencing and validated the most dysregulated miRNA, let-7e, with qRT-PCR. Let-7e was significantly increased in the sNDEVs of AD patients compared with those of healthy controls in a larger cohort. First, we evaluated the diagnostic utility of let-7e via ROC curve analysis, which revealed an AUC value of 0.9214. We found that IL-6 gene expression was increased in human microglia after treatment with sNDEVs of AD patients with a high amount of let-7e. Our study suggests that sNDEV-resident let-7e is a potential biomarker for AD diagnosis, and that AD patient-derived sNDEVs induce a neuroinflammatory response in microglia.


Alzheimer Disease , Extracellular Vesicles , MicroRNAs , Aged , Alzheimer Disease/metabolism , Biomarkers , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Humans , Immunity , MicroRNAs/metabolism , Microglia/metabolism , Neurons/metabolism
14.
Gene ; 822: 146344, 2022 May 15.
Article En | MEDLINE | ID: mdl-35183687

Despite an overwhelming number of cancer literature reporting the links between patient survival and the expression levels of genes or mutations/single nucleotide variations (SNVs) on them, there is only limited information on repeat elements, which make at least half the human genome. Here, we analysed RNA-seq data obtained from primary pancreatic cancer tissues of 51 patients and revealed that two transposons, HERVI-int and X6A_LINE, showed an upregulation trend in the patients who lived shorter, along with 56 other potential repeats which were linked to survival. We also detected expressed single nucleotide variations (SNVs) on repeats, among which LTR70:r.879A>G stands out with the effect of its presence on this particular repeat's expression levels and a significant link to overall patient survival. Interestingly, the expression of LTR70:r.879A>G correlated with different cancer genes in comparison to its reference version highlighting the involvement of BRAF and Fumerate Hydratase with this expressed SNV. This is one of the first studies revealing possible links between repeat expression and survival in cancer and it warrants further research in this avenue.


Pancreatic Neoplasms/mortality , Polymorphism, Single Nucleotide , Sequence Analysis, RNA/methods , DNA Transposable Elements , Databases, Genetic , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Pancreatic Neoplasms/genetics , RNA-Seq , Up-Regulation
15.
Turk J Biol ; 46(6): 458-464, 2022.
Article En | MEDLINE | ID: mdl-37529793

Majority of 37 human aminoacyl tRNA synthetases have been incriminated in diverse, mostly recessive, genetic diseases. In accordance with this, we uncovered a novel homozygous valyl-tRNA synthetase 1 (VARS1) gene variant, leading to p.T1068M mutation. As in the previously reported VARS1 mutations, the affected individual harboring p.T1068M was experiencing a neurodevelopmental disorder with intractable seizures, psychomotor retardation, and microcephaly. To link this phenotypic outcome with the observed genotype, we structurally modeled human VARS1 and interpreted p.T1068M within the spatial distribution of previously reported VARS1 variants. As a result, we uncovered that p.T1068M is clustered with three other pathogenic mutations in a 15 amino acid long stretch of the VARS1 anticodon-binding domain. While forming a helix-turn-helix motif within the anticodon-binding domain, this stretch harbors one-fourth of the reported VARS1 mutations. Here, we propose that these clustered mutations can destabilize the interactions between the anticodon-binding and the tRNA synthetase domains and thus hindering the optimal enzymatic activity of VARS1. We expect that the depiction of this mutation cluster will pave the way for the development of drugs, capable of alleviating the functional impact of these mutations.

16.
Viruses ; 15(1)2022 12 30.
Article En | MEDLINE | ID: mdl-36680144

The COVID-19 pandemic has persisted for almost three years. However, the mechanisms linked to the SARS-CoV-2 effect on tissues and disease severity have not been fully elucidated. Since the onset of the pandemic, a plethora of high-throughput data related to the host transcriptional response to SARS-CoV-2 infections has been generated. To this end, the aim of this study was to assess the effect of SARS-CoV-2 infections on circulating and organ tissue immune responses. We profited from the publicly accessible gene expression data of the blood and soft tissues by employing an integrated computational methodology, including bioinformatics, machine learning, and natural language processing in the relevant transcriptomics data. COVID-19 pathophysiology and severity have mainly been associated with macrophage-elicited responses and a characteristic "cytokine storm". Our counterintuitive findings suggested that the COVID-19 pathogenesis could also be mediated through neutrophil abundance and an exacerbated suppression of the immune system, leading eventually to uncontrolled viral dissemination and host cytotoxicity. The findings of this study elucidated new physiological functions of neutrophils, as well as tentative pathways to be explored in asymptomatic-, ethnicity- and locality-, or staging-associated studies.


COVID-19 , Humans , SARS-CoV-2/genetics , Neutrophils , Transcriptome , Pandemics
17.
Front Cell Dev Biol ; 9: 727747, 2021.
Article En | MEDLINE | ID: mdl-34970540

The generation and use of induced pluripotent stem cells (iPSCs) in order to obtain all differentiated adult cell morphologies without requiring embryonic stem cells is one of the most important discoveries in molecular biology. Among the uses of iPSCs is the generation of neuron cells and organoids to study the biological cues underlying neuronal and brain development, in addition to neurological diseases. These iPSC-derived neuronal differentiation models allow us to examine the gene regulatory factors involved in such processes. Among these regulatory factors are long non-coding RNAs (lncRNAs), genes that are transcribed from the genome and have key biological functions in establishing phenotypes, but are frequently not included in studies focusing on protein coding genes. Here, we provide a comprehensive analysis and overview of the coding and non-coding transcriptome during multiple stages of the iPSC-derived neuronal differentiation process using RNA-seq. We identify previously unannotated lncRNAs via genome-guided de novo transcriptome assembly, and the distinct characteristics of the transcriptome during each stage, including differentially expressed and stage specific genes. We further identify key genes of the human neuronal differentiation network, representing novel candidates likely to have critical roles in neurogenesis using coexpression network analysis. Our findings provide a valuable resource for future studies on neuronal differentiation.

18.
Turk J Biol ; 45(5): 599-612, 2021.
Article En | MEDLINE | ID: mdl-34803457

Hepatocellular carcinoma (HCC) is one of the deadliest cancers. Research on HCC so far primarily focused on genes and provided limited information on genomic repeats, which constitute more than half of the human genome and contribute to genomic stability. In line with this, repeat dysregulation was significantly shown to be pathological in various cancers and other diseases. In this study, we aimed to determine the full repeat expression profile of HCC for the first time. We utilised two independent RNA-seq datasets obtained from primary HCC tumours with matched normal tissues of 20 and 17 HCC patients, respectively. We quantified repeat expressions and analysed their differential expression. We also identified repeats that are cooperatively expressed with genes by constructing a gene coexpression network. Our results indicated that HCC tumours in both datasets harbour 24 differentially expressed repeats and even more elements were coexpressed with genes involved in various metabolic pathways. We discovered that two L1 elements (L1M3b, L1M3de) were downregulated and a handful of HERV subfamily repeats (HERV-Fc1-int, HERV3-int, HERVE_a-int, HERVK11D-int, HERVK14C-int, HERVL18-int) were upregulated with the exception of HERV1_LTRc, which was downregulated. Various LTR elements (LTR32, LTR9, LTR4, LTR52-int, LTR70) and MER elements (MER11C, MER11D, MER57C1, MER9a1, MER74C) were implicated along with few other subtypes including Charlie12, MLT2A2, Tigger15a, Tigger 17b. The only satellite repeat differentially expressed in both datasets was GSATII, whose expression was upregulated in 33 (>90%) out of 37 patients. Notably, GSATII expression correlated with HCC survival genes. Elements discovered here promise future studies to be considered for biomarker and HCC therapy research. The coexpression pattern of the GSATII satellite with HCC survival genes and the fact that it has been upregulated in the vast majority of patients make this repeat particularly stand out for HCC.

19.
J Gastrointest Cancer ; 52(4): 1356-1369, 2021 Dec.
Article En | MEDLINE | ID: mdl-34738187

PURPOSE: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide with lack of effective systemic chemotherapy. In this study, we aimed to evaluate the value of ATPase family AAA domain-containing protein 2 (ATAD2) as a biomarker and potential therapeutic target for HCC. METHODS: The expression of ATAD2 was tested in different HCC patient cohorts by immunohistochemistry and comparative transcriptional analysis. The co-expression of ATAD2 and proliferation markers was compared during liver regeneration and malignancy with different bioinformatics tools. The cellular effects of ATAD2 inactivation in liver malignancy was tested on cell cycle, apoptosis, and colony formation ability as well as tumor formation using RNA interference. The genes affected by ATAD2 inactivation in three different HCC cell lines were identified by global gene expression profiling and bioinformatics tools. RESULTS: ATAD2 overexpression is closely correlated with HCC tumor stage. There was gradual increase from dysplasia, well-differentiated and poorly-differentiated HCC, respectively. We also observed transient upregulation of ATAD2 expression during rat liver regeneration in parallel to changes in Ki-67 expression. ATAD2 knockdown resulted in apoptosis and decreased cell survival in vitro and decreased tumor formation in some HCC cell lines. However, three other HCC cell lines tested were not affected. Similarly, gene expression response to ATAD2 inactivation in different HCC cell lines was highly heterogeneous. CONCLUSIONS: ATAD2 is a potential proliferation marker for liver regeneration and HCC. It may also serve as a therapeutic target despite heterogeneous response of malignant cells.


ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Animals , Apoptosis , Biomarkers, Tumor , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Ki-67 Antigen/metabolism , Liver Neoplasms/pathology , Rats
20.
Int J Mol Sci ; 22(17)2021 Sep 05.
Article En | MEDLINE | ID: mdl-34502522

Acute myeloid leukemia (AML), the most common type of acute leukemia in adults, is mainly asymptomatic at early stages and progresses/recurs rapidly and frequently. These attributes necessitate the identification of biomarkers for timely diagnosis and accurate prognosis. In this study, differential gene expression analysis was performed on large-scale transcriptomics data of AML patients versus corresponding normal tissue. Weighted gene co-expression network analysis was conducted to construct networks of co-expressed genes, and detect gene modules. Finally, hub genes were identified from selected modules by applying network-based methods. This robust and integrative bioinformatics approach revealed a set of twenty-four genes, mainly related to cell cycle and immune response, the diagnostic significance of which was subsequently compared against two independent gene expression datasets. Furthermore, based on a recent notion suggesting that molecular characteristics of a few, unusual patients with exceptionally favorable survival can provide insights for improving the outcome of individuals with more typical disease trajectories, we defined groups of long-term survivors in AML patient cohorts and compared their transcriptomes versus the general population to infer favorable prognostic signatures. These findings could have potential applications in the clinical setting, in particular, in diagnosis and prognosis of AML.


Computer Simulation , Databases, Nucleic Acid , Gene Expression Profiling , Leukemia, Myeloid, Acute , Adult , Disease-Free Survival , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Male , Survival Rate
...